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Estimating Reliability

Estimating Reliability Prom a Single

Administration of a Mastery Test

A,atabtelty tEdt is one in which the range of possible scores is partitioned

into k nonoverlapping intervals that define various levels of student mastery.

The familiar pass-fail test with a criterion of 75 percent correct is an ex-

ample of such a criterion-referenced (CR) test, where k = 2. Since mastery

tests are often used in conjunction with instructional programs that maximize

the number of students attaining the highest mastery states and minimize the

variability of test scores, the classical correlation between scares on parallel

tests (or equivalently, the ratio of true to observed variance) may be attenuated

by lack of variability and thus is unsatisfactory as an indicator of CR reliabil-

ity (Popham and Eusek, 1969).

For this reason, Livingston (1972a,b,c, 1973) proposed the fol-

lowing index of CR reliability for the special case of k 0 2 mastery states:.

K
2
(X,7) =

Q2 {T7
(11-C)

2

a2(x) -C)2 (1)

where X and T are observed and tomescoresrespectively, p is the mean score and

C is the criterion score. In words, Equation 1 is the ratio of true variance

plus (p-C)2 to observed variance plus (p-C)2. Thus, possible lack of score

variability is compensated for by the addition of the squared distance between

the mean and the criterion score. K
2
(X,T) Increases as (p-C)

2
increases for

fixed 02(7) and a2(X), which for certain distributions is indicative of the

fact that assignment to mastery states is stable because scores do not cluster

about C. However, for a symmetric, bimodal distribution K2(X,T) increases

as C moves away from p toward either of the two modes--even though assignment
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to mastery states is more stable at p than at the modes. Livingston's index

has subsequently elicited criticism for a number if different reasons (Hamble-

ton & Novick, 1973; Harris, 1972, 1973; Shavelson, Block & Ravelch, 1972; Raju,

Note 1).

Harris (Note 2) thus proposed another coefficient for the case k . 2 ---

the squared correlation between mastery state, scored 0 and 1, and total score.

In analysis of variance terms, this is a strength of relationship index given

by:

2
SS

PC 2m SS
B SSW

(2)

where SS
B
and SSW are between and within sums of squares from a one-way analy-

sis of test score variance for the k 2 groups defined by criterion C. How-

ever, as 'Istria notes, for symmetric distributions. -the maximum -value. ot - .oc-
PC

curs at C = p when the proportions in the two groups equal one-half. In the

case of a symmetric, unimcdal distribution this implies that p
2
is largest when

I
C = p is at the point of greatest score density and; thus when assignment to

mastery states is relatively unstable.

More recently, Hambleton and Novick (1973) have suggested that an index

of CR reliability reflect the degree to which students are consistently as-

signed to the same mastery states across parallel test administrations,as mea-

sured by some coefficient of agreement across testings. Accordingly, Swamina

than, Hambleton and Algina (1974) proposed that the proportion of students con-

sistently assigned to mastery states across two testings serve as an estimate,

Po 2' / Pii
i1

(3)
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where pit is the proportion of students consistently assigned to the ith

mastery state across the two administrations. Actually, Swaminathan, Hamble-

ton and Algina recommend that a simple function of po be used--namely, the

proportion of consistent assignments beyond that expected by chance.

Most recently, Marshall and Haertel (Note 3) have suggested a single

test administration coefficient of agreement estimate. Their method is one

of computing the average po across all possible split- halves of a single test

(denoted B because it is computationally analogous to the classical at coef-

ficient) and then stepping up B by a Spearman-Brown type formula to obtain an

estimate for the full-length test. Initial results based on simulated data

seem to indicate that the Marshall-Haertel index behaves in a reasonable man-

ner for different score distributions and criteria C (Marshall, Note 4), i.e.,

the coefficient increases andLdacreases_appropriately as...criterion-Cds-varft-------------

iously set at points of light and heavy score concentration. However, the

derivation of the index was basically empirical rather than theoretical, and

thus many of its statistical properties are presently unknown. The purpose of

the present paper is to propose an alternative, single-administration coeffi-

cient of agreement estimate that is based on well-known statistical theory.

The Mathematical Model

Let us begin by formally defining the a/Wier:ea of SpeeMent OA 44

inaviduat 4 as the probability that i is assigned to the same mastery state

on parallel tests X and X'. The model for the case of k = 2 mastery states de-

fined by criterion score C is outlined here; but the model extends easily to

k > 2 mastery states defined by multiple criteria CI,C2,C3...Ck_l. Now,

there are two ways that an individual i can be assigned to the same mastery

state on parallel tests X and X' with criterion C: (1) Xi > C and Xli > C
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indicating consistent mastery/mastery decisions and (2) Xi < C and Xi < C in-

dicating consistent nonmastery/nonmastery decisions. (There are also two ways

that inconsistent decisions can arise: (1) X > C and Xt < C, and (2) X
i
< C

and X' > C.) Thus the coefficient of agreement P(0 for person i can be

written:

Phi') P(X
i
> c X >gl + P(Xi< C' Xi < C)

i
(4)

where the terms on the right side of Equation 4 are the probability of consis-

tent mastery /mastery and nonmastery/nonmastery decisions respectively. Equa-

tion 4 might be of interest to educators who want to determine the reliability

of a mastery test for making decisions about a particular person in an indivi-

dualized instructional program.

_________Mumeigekent_aiAggeementAat_a_paup:o4044mon&___can_nnw be defined

as the mean of the individual coefficients:

P
c
=

N
N

[P(Xi > C, X' > C) + P(Xi < C, XI < C)]
i=1

(5)

N

Equation 5 is the sum of the probability of a consistent decision for each per-

son i weighted by his or her probability of occurrence in the group, and so

again represents the (group) probability of a consistent decision on parallel

tests.

Let us now introduce two assumptions that make possible the estimation

of the individual coefficient of Equation 4, and thus also the estimation of

the group coefficient in Equation 5. The first assumption is that scores Xi

and X' are independently distributed for a fixed person i (Lord and Novick,

6
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1968). Under this assumption Equation 4 can be rewritten:

P(i) = P(Xi > c).P(XI > c) + P(Xi < c).P(X, < c)

This assumption implies that the experience of taking test X does not affect

the outcome on test X' for person i or vice versa; and its validity would de-

pend upon the degree to which content and administration of the two tests are

separate.

The second assumption is that the distributions of Xi and XI for a fixed

person are identically binomial in form (Lord & Novick, 1968). This implies

that each of the n items on a test is scored 0 and 1 and also that the exper-

ience of taking earlier test items does not affect outcomes on later items.

Under this assumption Equation 6 simplifies to

where

Pg) [P(Xi > C)12 + UP(Ki < C)12

[1' (Xi C)
2 + `P(Xi > C) j

2

g n
> (

X
)P 1(1 - P )

n-X

X iC i

The quantity pi in Equation 8 is the true probability of a correct item re-

sponse for person i, which can be estimated from his or her observed score Xi on

a single test, e.g., pi = Xi,. Thus, as illustrated'in a later section, the prob-

ability of consistent classification for each person can be estimated by Equa-

tions 7 and 8 and for an entire group by Equation 5, using the data from a

single test administration.

Furthermore, the marginal group probability of assignment to the mastery

(nonmastery) state is the same for both X and X' under the assumption of iden-

tically distributed Xi and andand the group probability of a consistent de-

7
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cision due to chance with criterion C is:

Pchance/C
P(X > 4)P(X, > C) + P(X < 4)P(X, < C)

(P(X > c)]2 + [1 - P(X 0)2
N

P(Xilc)

where P(X > C) .

(9)

(10)

Thus the group probability of a consistent decision beyond that expected by

chance is-given by the kappa coefficient (Cohen, 1960, 19684 1972; Swaminathan,

et al., 1974):

K
chance/C

P
C Pchance/C

where Pc is given by Equation S and P
chance/C

is given by Equations 0 and 10.

At thin point, it may be interesting to reflect on a moregeneraliogAimm017_______;

cal model of which Equations 6, 7 and 8 constitute a special, case. Figure 1

Insert Figure 1 about here

represents the outcomes over repeated, joint administrations of parallel teats

X and X' to person i with criterion C. The hatched areas of Quadrants I and

III represent consistent decisions. The essential problem is one of determin-

ing the proportion of the bivariate distribution that falls in these two quad-

rants, given data from a single teat administration. The binomial model is a

logical first choice because it is relatively simple and yet flexible enough

to account for the change in different students' distributions of scores, as

their true abilities vary from near the l'floor" of a teat through the midrange

and to the "ceiling" (see Lord and Novick, 1968, p. 510). However, more complex

models probably provide a more accurate description of reality in moat testing
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situations. For example, Equation 8 might be replaced by a compound binomial

model (Lord & Novick, 1968, pp. 524-526):

n
P(X

i
> C) L I(

X
)p
X
i(1-p )n-

X
i 4.A

i
B(X ))

XiIC i

Nand
8(Xi) above are defined by:

2 2
n (n-1)Svpi(1 -pi)

Al
2 2

. =

2[Mi01,Mx) Sx nSw]

(12)

(13)

2
E (..i)v+1(!)(7( -2 )4i-v(111} 0-2)-(Xi-v)

(14)
i 0

2
In Equation 13 Sy is the variance of the n item difficulties; MX and Sx are re-

respectively the mean and variance of test scores for the group.

____Es.timating pi

The computational process of the previous section is set in motion by

estimating the probability of a correct item response pi for each person from

the observed data. P(Xi > C) can then be computed by Equation 8 for the simple

binomial model or Equation 12 for the compound binomial model, followed by

Equations 7 and 5 or by Equations 9-11. The present section considers

various ways of estimating pi.

S.impee Simomiat Model

The traditional (maximum likelihood) estimator of pi is the proportion of

test items correctly answered by person i:

pi 'a Xi/n (15)

where Xi is the number correct and n is the total number of items. Since

the standard error of estimate in this case is Vpi(1-pi)/n, Equation 15 should

9
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lead to reasonably accurate results if n > 40, particularly if the mastery

level of most students is well above (below) pi = .50.

However, Equation 15 does not include certain collateral information,

2

,

such as mean MX and variance that is available in group testing. situations.

When the number of items n is small, the inclusion of such information is par-

ticularly important for obtaining better estimates of pi than those given by

Equation 15. For example, if the distribution of observed scores X for

the group approximates some member of the negative hypergeometric family of

unimodal distributions (see Lord & Novick, 1968, p. 519 for illustrations) a

better estimate of pi is given by the regression equation:

X

Pi a21(X7) (1.-a21)(M7) (16)

MX(n
'MX.)

where all as-itzTtl
2

is the -Kuder-Richardson -Formula 21 reli-

nS
X

ability coefficient (which is the squared correlation between observed and

true score under the simple binomial model.)

Equation 16 assumes that person i is a member of a unimodal distribution

A2
with mean MX and variance S. gowtver, =ultimata situations ate possible if

different grade levels are present or if the test items are designed to dis-

criminate very sharply between masters and nonmasters. Blind use of Equation

16 in such situations can lead to erroneous pi estimates because the means and

variances of the separate populations may be very different from the mean and

variance for the combined data. If the various populations are clearly dis-

tinguishable, a separate regression equation like (16) can be derived for each

group. However, an estimation procedure for pt that employs collateral infor-

mation and yet is free of distributional assumptions has obvious advantages.

One such estimate is given by (Lord and Novick, 1968, p. 514):

10
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n,-X+1 $ (X -1)

px X (X)

where 010(X-1) and +(X) are the relative frequency of X-1 and X in the

combined group and px_I and lok are the proportion estimates corresponding to

scores of X-1 and X. Unfortunately, complexity is the prieu that one pays for

the generality of Equation 17. Accurate estimation of 010(X-1) and (1)(X) require

a large sample of subjects. Additionally, since (17) represents n equations

in MI unknowns, the researcher must specify one of the pk_I values to set the

estimation process in motion, e.g., if X-1 is a chance score on an M.-option

multiple choice test one might set px_I = 1/m. See Lord (1959) for examples

of the use of Equation 17. Further pursuit of simple, yet general4 procedures

for estimating pi with small n is clearly indicated.. .. ,/.

Compound Sinomiat Modet

The procedures here are analogous to those above. If it is large the

classical estimate of Equation 15 can be used.

Howefer, the following regression estimate includes collateral information

about the mean, variance and item difficulties for a unimodal distribution:

Pi a20(7Xi) (1-a20)(MX7)

where a
20

is the Kuder-Richardson Formula 20 reliability coe:ficient

(which is the squared correlation between observed and true scores wider the

compound binomial model).

Examples

In order to illustrate the computation of the individual and group coef-

ficients P(i) and P
C'

the simple binomial model will be applied first to a small

set of stimulated data and then to real data.

11
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As shown in Table 1, the true probability of a correct item response pi

Insert Table 1 about here

was specified for each of N = 10 hypothetical subjects. An observed score Xi

on an n = 5 item test was generated for each subject uaing pi. For example,

a random unit was drawn indicating Person l's performance on each of the five

items as follows: 9, 3, 6, 5, 2. Since Person l'a probability of a correct

response is pl = .2, Units 0-1 were scored as correct and Units 2-9 as incor-

rect, accordingly X1 = 0 as shown in Table 1.

These single-administration X
i

scores are used to estimate P(i) and P

where C - 4. First the probability of a correct response p
i
for each student

is estimPt'd by Equation 16. Next, 13i, is substituted into Equation 8 with

C = 4 and )1= 5 to obtain P(Xi > 4) and its complement 1 - P(Xi > 4) for each

atudent. P(Xi > 4) and 1 - P(Xi > 4) are squared and summed according to Equa-

tion 7 to provide an estimate 1,4 of each individual's coefficient cf agree-

ment; and finally the group coefficient of agreement is the mean of the p4

column as indicated by Equation 5, i.e., P4 = 7.5196/10 A .75.

As a check on the reasonableness of the estimate above a second aet of

X' scores, shown in the last column of Table 1, were generated in the same

way as the X
i
scorea. Since eight of the students are consistently classified

as master/master or nonmaster/nonmaster on both tests with C = 4 (Students 2

and 8 being the exceptions), the two-administration estimate of the coefficient

of agreement is po im 8/10 us .80. A comparison of the one- and two-

administration estimates across criteria C = 1, 2, 3, 4 for the example of

Table 1 indicatea a median difference of 3 percent between the two indices.

However, the proof of the pudding is in the eating; so let us now consid-

er some real test data. In 1974, Form 4B of the Mathematics Baaic Concepts

Subteat (Sequential Tests of Educational
12
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Progress -Series II) was administered in Grade 5 of the Madison Public Schools.

This is a 50-item multiple-choice test of factual recall, mathematical manipu-

lation, and so forth. A group of N = 30 students was selected for analysis,

and an odd-item score X
i
and an even-item score X' were computed for each stu-

dent, providing unimodal distributions of scores on two, roughly parallel

tests of n 0 25 items. Summary statistics for the unimodal scores X
i

and X'

were as follows: (a) Mx g 17.40 and Mx/ = 17.17, (b) SX g 5.14 and g 4.47.

As in Table 1, a single-administration estimate based on the Xi scores was com-

pared for reasonableness to a corresponding dual-administration estimate based

on both X
i
and X

i
scores. The results are shown in Figure I.

Since the distribution of X
i
in Figure 2(*) has small variance, as might

be expected on a criterion referenced test, the norm referenced reliability

coefficient a
21

is seriously attenuateda
21

g (25/24)(l- (17.40)(25- 17.40)/

(25x5.14)] 0. Thus by Equation 16, 131. g 0(XL/25) + (1-0(17.40/25) 4 .70

for each of the 30 students. Using the procedure outlined in Table I a value
A

of P was computed for C g 10,11,...,25 as indicated by the broken line in

Figure 2. The two-administration estimate po (Smeminathan, et al., 1974) based

on both X
i
and X' scores was also computed for the same C values, as indicated

by the solid line in Figure 2. The median difference between the two curves

is 3 percent across criteria C a 10,11,...,25.

A
Figure 2 illustrates that Pc is a reasonable estimate in the sense that

it increases and decreases at points of light and heavy score density (*) in

the same way as po. However, it would be most unwise to draw conclusions about
A

the accuracy of PC relative to p
o

on the basis of this single data set. In

A

this particular case, PC generally provides a conservative estimate of the pro-

portion of consistent decisions relative to po. This can be accounted for by

two factors: (a) X
i
and X' are not based on independent administtations as

13
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^ ^

assumed by the model for Pc, so po estimates tend to be larger than Pc

estimates; and (b) the simple binomial model is an approximation to reality.

In regard to the latter point, theory suggests that the compound binomial

model of Equations 12-14. would further enhance the agreement between

the curves of Figure 2.

Generalization to h Mastery Levels

Suppose there are h possible mastery levels defined by fa - 1 criteria

CI,C2,...,91.4. For example h = 3 mastery states like below-average, average

and above-average might be defined by two criterion scores Cl, C2. Then the

probability that person i is consistently classified is given by a general

form of Equation 4:

p
...0

k-1
0 P(Xi < Ci,Xi < Cl) 4. F(Ci Xi < C2,C1 < C2) . . .

C
1
C
2

+ P(91_2 < Xi < ch_vciaj_
z < Xi

< c ) + P(c
h-1 ta

< X xi__ 1 Xi)

= LPN < C1)]2
2

)12+

EP(Ck-2 < Xi Ck 1)1

2

+ (P(ch-1 .5. Xi))

2

(19)

where the second line of Equation 19 again follows from the assumption that Xi

and X1 are independently and identically distributed. If X
i
is again assumed

to have a simple or compound binomial distribution, each term in the bottom

line of Equation 19 can be estimated by summing binomial probabilities as in

Equation 8 or by smirking compound binomial probabilities as in Equation 12.

example, if the binomial.model is assumed,

P(ci .!, Xi < c2). . qt )41.0.
pi)"Xi.

X
i 1

i

14
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The group probability of consistent classification is then obtained by

averaging the P
(i)

C
1
C
2.

..Ck
as in Equation 5:

N
p(i)

i=1P
"1'2' '11-1.

(20)

Finally, Equation 9 can be written more generally to obtain the group

probability of consistent classification due to chance with criteria

C1,C2,...,Ck_1 as follows:

Pcbanceic
1
C
2

..0
= [P(X < c

1
))

2
+ [P(C

2
< X < C

3
)]+ . . .

k-1

+ [P(Ck..2 <X < Ch -1)]2
[P(Ck-1 < X)]

2

where, for example, P(C1 < X < C1,0.) is obtained as in Equation 10:

PO < X < C2)
1.- i 2i1

P(C < X < C
2
)1

Coefficient kappa K is then obtained as in EqUation 11, substituting

and P as defined above.
Ci chance/C1C2...ch-1.

15

(21)

(22)
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Table 1

Estimation of P(1) and pc Using Simulated Data for Ten Persons on a Five

Item Mastery Test With Criterion C = 4

O
cg

i P.1
X -

Pi P(XI>4) 14(Xi>4) [P(Xl>4))2 '[14(Xi>4))7 P4i) X'c

1 .2 0 .19 .00SS .9945 .0000 .9890 .9890 2

2 .4 4 .66 .4478 .SS22 .2005 .3049 .S0S4 2

3 .4 2 .43 .1121 .8879 .0126 .7884 .8010 2

4 .S 0 .19 .00SS .9945 .0000 .9890 .9890 3

S .S 2 .43 .1121 .8879 .0126 .7884 .8010 2

6 .S 2 .43 .1121 .8879 .0126 .7884 .8010 2

7 .S 1 .31 .0347 .9653 .0012 .9318 .9330 3

8 .6 3 .S4 .2415 .7S8S .0583 .S7S3 .6336 4

9 .6 4 .66 .4478 .SS22 .2005 .3049 .S0S4 S

10 .8 S .77 .6749 .3251 .4SSS .1057 .5612 S

i

7.5196

a
MX

b

= 2.30, S; = 2.61,

X.

a21/X(iP * (1

a21/X
= .S8

M

'4

v
(...2.1

a21 /X)

C Mx, = 3.00, Sx, = 1.40,
a21/X' .67
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Figure Captions

Figure 1. Outcomes Over Repeated Administrations of Parallel Tests to an

Individual

Figure 2. Comparison of One- and Two- Administration Indices For Various

Criterion Points in a Unimodal Distribution
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Nonmastery
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